Tag Archives: volcano

The Floor is Hot Lava! A Volcanic Game Review

Stick your hand up if are guilty of trying to stretch yourself from your sofa to a nearby chair that is annoying just out of reach, while someone is standing there watching you with confusion. When asked what you are doing you simply reply, “the floor is lava, I don’t want to burn my leg off!” For those of you who didn’t raise their hands, the Floor of Lava is age-old game of an imaginary lava lake that suddenly appears, turning a child’s living room into a dangerous obstacle course. At the same time parent’s watch with fear of which will break first: the child after falling off the furniture, or the furniture after the child goes through it?

The major downside to this epic parkour adventure is that as you grow older you start to realise the adults may have had reason to be concerned about your safety beyond the non-existent lava. You just have to watch a couple of #TheFloorIsLavaChallenge2017 videos to understand… 

Thankfully, there is a new solution to our craving for re-living those good old days! Hot Lava is the brand new game available on Steam and Apple Arcade that takes the classic real-world game and turns it into a virtual parkour race game, which actually forces you to retry if you fail a jump instead of blagging that you didn’t touch the floor. 

As with all previous reviews we are keeping to our standard gaming review criteria out of 10, 1 being unrealistic and 10 being realistic for:

  1. Aesthetics
  2. Accessibility
  3. Viscosity
  4. Death
  5. Overall plausibility

Results: Brilliant lava visuals, which is great when that is what the game centres around. Any other volcanism is very limited. 

Let’s jump in (pun fully intended)!

Hot Lava throws you right into it with a tutorial set in a house that appears to have had the misfortune of having a volcano grown right in the middle of it (Fig. 1). The only way out is to jump! 

The first and most striking thing to notice is the lava (which is good for a game that centres itself around it). There is a massive range in the ‘hot’ colours of yellow through to red in the molten, churning substance. What makes it stand out even more is the dark, solidified lava that can be found on the surface of the molten pools. Not only does this add more diversity to the visuals, but also a great deal of realism, especially as the solidified lava is found in greater concentrations along the edges of rooms and in stagnant areas (Fig. 2).   

Heading up the stairs the lava has completely solidified, with no molten lava flowing under the crust (Fig. 3). This allows you to take a well-earned break from the jumping and instead run across the rocky surface (it also makes it much harder to fall up the stairs for any character with two left feet).

The lava texture used down the stairs is very well designed, reflecting the nature of ropey-like pãhoehoe lava, which is a common texture found in basaltic lava flows. However, it is clear that they designed this as a generic texture pattern to use when looking for clues on the lava’s flow direction. Upon reaching the midstairs landing, the lava actually indicates it managed to flow up the stairs (red arrows in Fig 4)! The lava coming from the top of the stairs to the midway section does however appear to have correctly flowed down the stairs. 

After clearing the tutorial, you arrive in a school which has a safe practice zone in the gymnasium, with vaulting blocks and bars to jump and swing across with no risk of death on the wooden floor. Dotted around the room (and throughout the school as you progress) however, are several portals to numerous hellscapes, including a rocky version of the gym you were just in, a questionably located outdoor play area, what most would say is a accurate visualisation of a classroom and many more locations (Fig. 5).

One major question I had while running and jumping through, the maps is where on earth does all this lava come from? Fissure style eruptions would make the most sense, which are essentially cracks in the surface of the earth that lava can erupt out of (Fig. 6a). They can produce vast quantities of low viscosity lava that can spread out and cover large areas. Prime real-world examples include the 2018 Hawaii fissures that covered 35.5 km2 and the 1783-84 Lakagígar fissures in Iceland, covering 565 km2. The downside to this theory is the lack of lava fountains. At the fissures (the cracks), lava can be ejected out like a bar-sprinkler, only it is lava that is sprayed out everywhere instead of water (Fig. 6b). In some occasions the lava can reach spectacular heights of 2,000 m in the air (this record is held by Mt. Etna in 1999)! This makes locating the fissure much easier and is something I have yet to see in Hot Lava. 

Instead, the source of the lava appears to be small-scaled volcanic vents (Fig. 7). From these mini volcanoes the fresh lava is cascading out. While they are nicely designed in a visual sense, they are few in number and it is hard to believe that all the lava that has flooded an entire school playground has been covered and maintained in a molten state by such small outlets. 

The other very questionable aspect of this game is the furniture and decorations that allow you to cross from one part of the map to another. They just sit there, either in or on the lava. Some do have scorch/burn marks (Fig. 8), but for the most part they remain unscathed (Fig. 9), including cat litter bags, plastic toys and wooden logs. All of these items would easily be melted or burnt to ashes by the lava, no questions asked. 

But I suppose without these magically non-flammable/ combustible objects in the game things would be much harder because there would be fewer things to jump to. That and it would look a lot less interesting as just a barren, scorched hell-scape. So, the items like the little dino toy do add a bit of an entertainment factor to the game to improve it. 

The final thing to look at with this game is what happens when you don’t land the jump? In the real-world version of the game you just make a little additional hop and claim you made it really. Hot Lava is less forgiving.  Instead you re-enact the infamous Terminator 2 death, raising your thumb up as you sink into the molten lava as the screen whites out. Now while I could explain how this won’t happen in real life, I am instead going to leave you with this Because Science video explaining what death by lava would really be like…

And with that covered there is just the summary scoring left.

  1. Aesthetics: 9/10

The lava aesthetics are one of the best I have seen while playing video games. While most tend to just stick with molten lava flowing consistently, Hot Lava has a much more realistic take, with cooled black surfaces and a swirl of different hot spots.

  1. Accessibility: 3/10
    Because Hot Lava is an obstacle course type game, where the aim is to get from A to B as quickly as possible, the game has a fairly restricted amount of accessibility to prevent players getting lost. However, I did find that if you try hard enough and spam the keys you can make it to ledges that were probably unintended for access. This is actually where I found most of the volcanic vents, hidden away. 
  1. Viscosity: 6/10

Without a doubt, the lava found within Hot Lava should be basaltic. Only such a high viscosity lava would be able to pool out and cover such an area. The flow mechanics do show a relatively ‘lively’ lava, as it flows with ease around the map, which would be expected from basalt. However, as pointed out in the Because Science video, the lava’s density should be much much lower to allow the avatar to sink that easily into the lava. 

  1. Death:  2/10

While the death in Hot Lava is entertaining, especially from a nerdy Easter egg point of view, the Because Sciencevideo brilliantly explains how instead of sinking into the lava, you are more likely to float on the molten surface. However, the whiting out is potentially realistic (I can’t say for saw because I haven’t been killed by lava before), because we do tend to envision bright white when touching hot objects. There is also the fact that Kyle in the video points out that the air above the lava would be so hot your avatar would actually burn their lungs out while making the first jump. But that doesn’t make for very fun game play. 

  1. Overall plausibility: 1/10 
    The Floor is Lava is always a great game to play. However, if trying to play the game in real life it would be impossible. In terms of Hot Lava, the lava itself would have melted/ burnt nearly all of the furniture and would weaken the structural integrity of the buildings that you end up jumping through due to them having mostly a wooden frame. 
    On top of this, the ability to maintain just a widespread molten pool of lava is near impossible. In real world fissure eruptions, the molten lava is only found directly next to the active fissures and in the currently active streams of flowing lava. The rest has cooled to a solidified, rocky surface. This can be seen in some stagnant parts of the lava pools, but not to the extent that would be expected. 

As always, I hope you enjoyed the review. If you’re looking for a fun obstacle course game I’d recommend Hot Lava to try out. And if you want to read some more video game goodness, please check out our other blogs!

Shadow of the Tomb Raider: a volcano-videogame review

Hello fellow videogame and volcano friends. I wanted to share this with you sooner, but I have been super busy and recovering from passing my PhD viva, doing my corrections and teaching duties…I also have a load of new games.

Anyway, The Shadow of the Tomb Raider. Absolutely loved this game. In part due to  loving the trilogy but also the ethical questions raised in being a coloniser and just taking stuff without understanding it (although Lara did turn it around in the end). Also because of the geohazards presented. Not only was there volcanic eruptions (and related hazards) but also tsunamis and earthquakes.

Like Spyro, Lego, BoW and others, areas of the game were revisited, and walked through the feasibility of the volcanism presented using the following criteria out of 10, 1 being unrealistic and 10 being realistic:

  1. Aesthetics
  2. Accessibility
  3. Viscosity
  4. Death
  5. Overall plausibility

Revisiting this game was tricky in places, as there are certain places you cannot return to because they have either been destroyed or I forgot where they were. So, I did as many as possible post-main storyline, where places were almost free of people/hungry animals wanting to kill Lara, but as this is a Tomb Raider game, the environment still had it out for her. For others, such as the tsunami/earthquake/volcanic eruption/lahar sequences, I did new game plus. So took a little longer than I would have hoped.

Before I go raiding however, I would like to introduce to you a feature I want seen in all future games: the photography mode.


Just by pausing the game, you can choose the photography mode option in the menu and you are given many options to get the perfect screenshot. Not only is there a field of view and depth perception options, there is saturation, contrast, brightness and filter options. I can hide these options with “Y” and then because these images are saved in game, I just used the Xbox’s screenshot function to get the best images. More like this please!

Results of my volcano raiding adventures: logical with a dash of “not possible”.


Because I love maps, almost the first thing I do when I start a new game, is look at the in-game map. When I saw this for a first time, my reaction was “ooohhh yes, when is the eruption?!” Turns out I had to wait a while.

During the prologue portion of the game, Lara and her friend Jonah are exploring in Mexico. The geohazards journey begins when Lara comes across a legend depicting a sequence of “cataclysms” in the form of a tsunami, storm, earthquake and a volcanic eruption.


I like this, as I have an interest in an area of research called “geomythology”. I touched upon in my From Dust review. After existing the tomb and getting into a scuffle with the main antagonist, the first geohazard occurs.



I cannot speak from experience, but tsunamis are a terrifying hazard. I think this sequence captures it well. There plenty of opportunities to kill Lara if not timing jumps right or you bump her into something you were not supposed to.

It is possible to survive them, but chances are not very high, mainly due to the force of the water and the many obstacles in the way. I talk more about them in my From Dust review.

Next part of the game, Lara and Jonah travel to Peru, but crash land in the jungle due to a storm that “came out of nowhere”. That was the second foreseen hazard. I shall skip onto a sidequest tomb I explored, I found the geology quite interesting. In this tomb, it was beneath(?) an old location where oil was extracted.


Oh and it also had wolves in it. It reminds me of the Darvaza Gas Crater in Turkmenistan. Which is related to methane gas deliberately set on fire since 1971 and is still ongoing. Not oil, but it just reminded me of it. This is certainly beyond my expertise, maybe oil does behave like this? Another location, part of the main quest, has pools which maybe oil or not, which are constantly on fire.

Another sidequest tomb had natural pockets of sulphur dioxide (as Lara remarks “uhh it smells like rotten eggs”), which can be set on fire and cause some explosions. Whilst I question how people managed to construct something to concentrate the gas, it is entirely realistic to have pockets of natural gas, as societies extract them for energy.


Next hazard was the earthquakes, first when I reach a main quest tomb:


I have to hand it to Lara, she somehow knew that it was a foreshock? There were 2 foreshocks, before the larger, final earthquake happened within this sequence:


I think my confusion here is the terminology used, as it conflicts with what the earthquakes were described as in the next area of San Juan’s Mission. In this area, right in the shadow of a volcano , people describe the earthquakes as volcanic tremors. Tectonic earthquakes and volcanic earthquakes are different.


They mainly differ because of their origins: whilst tectonic earthquakes are the result of tensions within the plate tectonics and fault lines, volcanic earthquakes are related to magma movement, the fractures they cause but also strong volcanic explosions. Of course, it can be hard to distinguish between the two without the proper instruments, the perceptions and life experiences people have had.

Approaching near the end of the game and emerging from a tomb, the volcano just is…erupting. With no other earthquakes or signs that its activity was increasing. It was confusing. From the following screenshots, you can see it is a kind of eruption that would not go unnoticed. Or it is maybe because Lara was underground in between the earthquakes and the eruption taking place. I do not know, I feel like something was missing in letting me know that a full on eruption was happening.

Critiquing the eruption itself, there are some good elements and some missing opportunities. Good thing: the eruptive column. It dominates the sky, it does appear to drift in the direction of behind the volcano, making that part of the sky dark. The lava fountaining is also realistic, but I do wonder if certain hazard processes are missing here. The shape of the volcano is similar to Mt. Mayon in the Philippines. This video has shows the features I think are missing. Namely a little bit more lava spatter but also pyroclastic density currents (PDCs). But, perhaps they could have occurred behind the volcano where we cannot see? PDCs can travel down a defined river valley path but also blanket the flanks of volcanoes.


One thing I neither fully agree with or disagree with is the depiction of ashfall. What is different compared to games reviewed so far (apart from Pokémon Emerald), is that ash actively represented. What I do question is all the little specks of embers. Volcanic ash is not as incandescent as what is shown here. On the same note, Lara and all others in the area, should have been wearing eye and breathing protection. Volcanic ash are tiny particles of rock and if inhaled, can cause serious respiratory problems and an irritant to your eyes. Nonetheless, it is the most realistic in what has been reviewed to date.

After fighting a bunch of people and losing the artefact to the antagonist of the game, something unexpected happened. Interestingly, this earthquake (and there was a distant sound of an explosion) happened first:


And then this:


A lahar! Lahars are volcanic mudflows: slurry mixtures of volcanic material, debris and water (or ice). Generally was surprised that this was put into the game but the rest of the sequence…I had questions. First is that this begins in a street. Has this place been built on an old river channel? If so, that is serious neglect of land-use planning. If not…I do not know, volcanologists should have mapped this area and produced a hazard map. The lahar does seem like the right consistency, then again, lahars have different categories depending on the ratio of water and sediment content. You may also see a volcanic bomb just before the camera pans around. I cannot tell what the distance from the volcano to Lara’s position is, but generally speaking, volcanic bombs do not travel beyond 5km from a volcanic centre – mainly because they are too heavy to travel any further.

Second issue I had are the huge gaps that appear in the ground? I honestly cannot explain if and how it is connected to the volcanic eruption and the lahar. Maybe loads of sinkholes just happened coincidentally?



Actually, this was the biggest issue I had with the lahar sequence. I cannot understand it at all.

SOTTR_GCaiman Gif (2)

Last issue was how the sequence ended. There just happened to be a coastal area nearby, some debris flowed out with the lahar and then it just…ends? It was quite a substantial lahar, I think it would carry on pouring into the coastal area for a lot longer than it did.

That was the last of hazards in the main game. But, there are two DLC (downloadable content) called “The Forge” and “The Grand Caiman”, where volcanism returns. The Forge started it off when you first arrive in an area where you fight off some wolves:

SOTTR_The Forge (1)

After a bit of navigating the environment, Lara reaches the main puzzle area:

SOTTR_The Forge to Gif (1)SOTTR_The Forge (4)

Exploding sulphur dioxide pockets also feature, which are used to turn the central tower. I am intrigued how a wood, metal and brick could endure the lava and extreme heat for so long, however the base of the tower seems to be constructed into the local rock. I am also uncertain how far below ground we are, but is it possible to reach a cave system that has a lava lake area? I do not think we have real life examples to help us with that answer.

The second DLC was more interesting. We have a volcano in eruption, but the ashfall is more realistic. Moreover, Lara reacts to the ash but putting her hand over her mouth and coughing. In fact, it causes damage to her.

SOTTR_GCaiman Gif (1)

She is seriously under prepared in exploring in these areas.

SOTTR_The Grand Caiman (8)SOTTR_The Grand Caiman (5)

However, further into the DLC quest tomb we hit familiar territory:

And with that, let us have the verdict on The Shadow of the Tomb Raider’s representation of volcanism (and other hazards).

  1. Aesthetics
    • 9 – It is unmistakably a beautiful game in an environment made to be as believable as possible. Texture on the lava appears accurate with the darkened patches related to cooling.
  2. Accessibility
    • 8 – If the invisible boundaries are not there, then falling into the lava is possible. The tsunami and lahar sequences put you right into the action, so highly accessible on purpose. The earthquakes and volcanic eruption are mainly for driving the story forward and are background imagery.
  3. Viscosity
    • 6 – This was hard to determine, but as per usual in videogames, it appears too runny.
  4. Death
    • 9 – If you know your Tomb Raider games, then the death sequences are sometimes too graphic. In all sequences apart from the earthquakes and volcanic eruptions can you be killed by the hazards. However, and I apologise that I did not record a clip to show, if you fall in lava, you simply just disappear. Lahar was a bit more realistic by sinking into it.
  5. Overall plausibility
    • 8 – The game’s environment was made to be believable, so the hazards tried to be too. Whilst I have some issues with the earthquake and lahar sequences, overall, it does a pretty good job in my opinion.

There you have it, very long overdue. I hope it was enjoyable! I will not be reviewing for a while now, but hopefully will be back reviewing next year. There are plenty of volcano-videogame reviews if you have not already seen them:

Happy gaming 🙂

Pokémon Emerald: a volcano-videogame review

Welcome back volcano-videogame friends, we have a new blog and a new guest! Nadine Gabriel takes us through the volcanism of another Pokémon game: Emerald version.


Pokémon Emerald is the enhanced version of Pokémon Ruby and Sapphire, and was released in 2004/2005 for Game Boy Advance. It’s the final game of the third generation of Pokémon. Although the plot is pretty similar to Ruby and Sapphire, there are some extras such as three different legendary Pokémon and the presence of both Team Aqua and Team Magma – you can read more about the differences here.


Pokémon Emerald takes place in Hoenn which is based on the Japanese region of Kyushu but rotated 90° anticlockwise. The map below shows the locations featured in this review.

2) Hoenn Map

As usual, the following criteria will be rated out of 10, with 1 being unrealistic and 10 being realistic:

  1. Aesthetics
  2. Accessibility
  3. Viscosity
  4. Death
  5. Overall plausibility

Verdict: Lava, lava everywhere! There are lots of chances to explore volcanic landforms in Hoenn!

Mt. Chimney

To the north of Hoenn lies the volcano Mt. Chimney. You can access its fiery peak via Jagged Pass (a steep mountain path) or the more scenic and relaxing cable car. As the cable car carries you towards the top of Mt. Chimney, ash starts to appear in the air.

3) Cable Car

Once at the top, you’re free to explore the bubbling lava in the crater or battle various Pokémon trainers. Many trainers seem fine with standing right next to a bubbling lava lake, although one person does complain about the heat. Right outside the cable car station is an old lady who sells Lava Cookies. These tasty treats don’t contain lava but they can heal your Pokémon’s status conditions.

4) Lava Cookies

Early on in the game, exploring Mt. Chimney reveals a subplot which involves stopping Team Magma from using a stolen meteorite to intensify the volcano’s activity and create new land. While it’s true that volcanism is responsible for creating various landmasses all over the world (e.g. Hawaii), Team Magma’s evil plan sounds very questionable. After you foil the meteorite plot, Team Magma resort to using jet fuel to trigger Mt. Chimney – I guess that sounds a little bit more plausible!

5) Ashy Eyelashes

To the north of Mt. Chimney lies Route 113. Along this route, ash is constantly falling from the sky and blanketing the ground in thick grey ash. Since this is the only place in Hoenn with ash, it shows that the prevailing wind direction is southerly. The ash fall is so intense it blocks out the Sun so this area doesn’t get very warm. Despite the suffocating cloak of the ash, people seem to get along with their lives: some children hide in deep piles of ash, others enjoy taking walks through ash-covered grass, and one person tries to crack a joke about it.

6) Team Magma

Once you obtain the soot sack, you can collect volcanic ash. You can only collect ash by walking through tall grass so you’ll be at risk of Pokémon battles; it’s best to collect ash while using some Repel. If you take the collected ash to the local glassmaker, they’ll be able to turn it into one of the following glass items.

  • Blue flute (250 steps): Wakes a sleeping Pokémon during battle
  • Yellow flute (500 steps): Snaps a Pokémon out of confusion during battle
  • Red flute (500 steps): Snaps a Pokémon out of infatuation during battle
  • Black flute (1000 steps): Reduces wild Pokémon encounter rate by 50%
  • White flute (1000 steps): Increases wild Pokémon encounter rate by 50%
  • Pretty chair (6000 steps): Furniture for the player’s Secret Base
  • Pretty desk (8000 steps): Furniture for the player’s Secret Base

7) Glass Workshop

On the southwestern foothills of Mt. Chimney is Lavaridge Town. It has a hot spring which is a hit with the local old people who claim it calms nervous tension, relieves aching muscles, solves romantic problems and attracts money. Next to the hot spring, other people relax by burying themselves in warm sand. This is likely based on sand bathing on Ibusuki Beach in Kyushu, Japan where people bury themselves up to their necks in sand warmed by Kaimondake Volcano.

8) Lavaridge Hot Spring

Sootopolis City

This city is built on the crater of a volcano. It’s nice that so many of the locals are happy to tell you about the geological history of the city. Many years ago, an underwater volcano erupted and soon emerged from the sea. Over time, its crater became filled with rainwater and then the city was built on the inner crater wall. Sootopolis City can only be accessed with a flying Pokémon or by diving underwater and through the crater rim. Inside the city, several houses and steps are built on the steep crater walls.

9) Sootopolis


It’s not just Hoenn that’s volcanic. There are a few volcanic Pokémon too!

  • Slugma: This slug-like Pokémon is composed of magma and lives near volcanic areas to prevent itself from cooling down (if it does cool down, its skin will harden and become brittle)
  • Numel: This camel-like Pokémon has a volcanic hump on its back filled with 1200 °C magma (this is a similar temperature to the lava erupted by Kīlauea in Hawaii)
  • Camerupt: This Pokémon evolves from Numel when it reaches level 33. It has two volcanoes on its back which erupt every 10 years
  • Groudon: One of the three legendary Pokémon in Emerald (the other two are Rayquaza and Kyogre). Towards the end of the game, it can be found sitting in a lava lake inside Terra Cave. The location of Terra Cave moves across Hoenn, which suggests that lava lakes are common throughout the region

10) Volcanic Pokemon


  1. Aesthetics: Bearing in mind that this game was released back in 2004, the graphics are pretty decent. The bubbling animation of the lava really brings it to life, there’s animated steam in volcanic regions, and the visual effects when walking through ash are nice. Score = 8
  2. Accessibility: Chimney is very accessible. If you’re not able to make the climb up the steep Jagged Pass, the cable car will take you right to the top so you can easily explore the crater. Also, there are lots of places where you can walk right to the edge of lava lakes. Score = 9
  3. Viscosity: This is a bit hard to rate as there’s no flowing lava in the game. The lava lakes bubble quite vigorously so viscosity seems to be low. Also, Groudon manages to swim quite easily through a lava lake. Score = 9
  4. Death: Several people stand right next to bubbling lava lakes without any ill effects even though they don’t have any protective equipment. Luckily it’s not possible to jump into any of the lava lakes. The glassmaker on Route 113 has a terrible wheezing cough due to ash inhalation – Mt. Chimney does have negative health effects but it doesn’t seem to be lethal. Score = 1

Overall plausibility: Other than the not so hot lava and the weird meteorite-powered eruption subplot, overall plausibility is not so bad. The hot springs and sand bathing are based on real-world examples. The ash causes realistic respiratory problems. Score = 5


If you enjoyed this review, do check out others by myself and guest blogger Ed McGowan.

Happy gaming 🙂

Pokemon Silver: a volcanism-videogame review

We have another volcano-videogame review, with Ed McGowan (he has been busy whilst I have been finishing up my PhD). Last week, he wrote about submarine volcanism in Subnautica and previously wrote about Death Mountain in The Legend of Zelda: Breath of the Wild. Today, we have an exciting review from an absolute classic: Pokemon Silver.


It’s time to dust off an old classic for this volcanic game review! In my case, dust off the very first game I ever played, back on my Pikachu/Pichu Gameboy Colour that both console and cartridge still work to this day!

Pokémon (originally called ‘Pocket Monsters’) is one of Nintendo’s biggest franchises. First released in 1996 with Red and Blue (and Green in Japan), a new generation of games or a graphically updated remake of an old game is released nearly every year, with high anticipation from fans of all ages. Each installment adds new Pokémon to catch to the ever-growing list, currently at 809 (with more being added in November’s Sword and Shield release) and new mechanics for traveling around or battling players, just to keep an old franchise fresh.

In the case of Pokémon Silver, it was released alongside Gold and later Crystal as the second generation of the franchise in 2000. Set three years after the events of the first generation, it provided fans with a whole new region to explore and for the first time, new Mons to catch. One of the greatest inclusions in the game is that once you managed to beat all the gym leaders and Elite Four (the best trainers in the region), you were granted access to the region from the previous games! Still to this date it is the only Pokémon game to give players access to two regions within one game. For us, this gives us more to play and more to volcanically review!

As always, the game will be reviewed using a criteria out of 10, 1 being unrealistic and 10 being realistic for:

  1. Aesthetics
  2. Accessibility
  3. Viscosity
  4. Death
  5. Overall plausibility

Results: Real-life ‘the floor is lava’ is a health and safety nightmare! And it’s a shame we missed the volcano erupting.

With every generation of games there are always two important questions to consider: which version to get (each has two or three versions with an exclusive legendary or two to catch), and which starter Pokémon to choose (always a choice of the fire, water or grass-type). The starter choice always divides players, leading to heated arguments amongst fans. In the case of the second generation to me there is only one choice: the fire-type Pokémon, Cyndaquil!

Described as the ‘fire-mouse’ Pokémon, Cyndaquil is actually based on an echidna, with flames replacing the spines of the real-life species. On a biological side note, the echidna shares a common ancestor with the platypus, and both species are the only living mammals that lay eggs. But the real selling point for Cyndaquil for me (other than its cute awesomeness) is that it eventually evolves into Quilava and later into Typhlosion. As evident from the origin of their names (‘lava’ and ‘explosion’), these two are described as ‘volcano’ Pokémon. Need I give any other reason to choose them?

Thinking about it now, Cyndaquil’s evolutionary line was probably the first indication of my eventual academic path to volcanology. Just goes to prove those early years in line have a big impact on where you eventually end up…

Johto Region

Because Pokémon games focus more on walking around through tall grass and in caves in search of wild Mons to catch, and the low graphic quality of GameBoy games, volcanism is hard to find within Silver. It took me until the final gym of Johto (the region you explore at the start) to find actual lava!

It would seem that in order to try and display a sense of power, the dragon-type gym leader Clair thought it would be a good idea to have a maze puzzle with an actual flow of lava within his gym… While lava is a very cool way to display power, I don’t think the health and safety risk assessment conducted on the building would be worth the effort. Although this is 20 years ago, so maybe safety was a lot more relaxed back then?

My main concern is that in order to cross from island to island, eventually making your way to Clair, you have to push boulders on the second floor down holes for them to land in the lava and form a bridge. Given the small size of the gym, many of the trainers working there are definitely within splash range of the molten hot lava, especially the red-haired woman in the top right (she most certainly got burnt).

The other concern is the bubbling gases being released from the lava. If these gases are the same of those released from volcanic lava then it is water vapour (fine), carbon dioxide (less fine), sulphur dioxide (not good), hydrogen sulphide (really not good) and much more. With an air inside the gym like this, I’d expect the trainers to either be wearing a gas mask, or the building must have an excellent ventilation system!

Kanto Region

The best volcanology, as it seems with most video games is left inaccessible until near the end of the game. Not that it was due to a lack of trying. In the first game you could access Cinnabar Island, which is a known active volcano from the animes, via Route 19. However, as that would let you reach the island too quickly in Gen 2, the developers came up with a clever way to stop you: have a volcanic eruption block your path…

While volcanic eruptions can indeed block off roads and paths as demonstrated in these amazing time-lapses from Hawaii’s volcanic eruptions last year, the Route Officer states the boulders were “hurled”. Volcanic bombs (volcanic rocks launched in the air with force during an eruption) can be found a very long way from their source vent. However, it seems highly unlikely these boulders are volcanic bombs when you look at how far away Route 19 is from Cinnabar Island.

Unfortunately, it is near impossible to gauge distance in any Pokémon game, as nothing is to scale. It takes less than a minute to cross a major city, which would take more than an hour in real life. The animes have a more realistic view on distance as pointed out by the meme above, taking a number of episodes to walk a distance that takes mere minutes in the game. However, again it is extremely difficult to calculate distance in the animes to relay over to the games.

What can be said for sure, is that Route 19 is too far away for the rocks blocking access to be volcanic bombs. However, the eruption could have easily caused tremors and/or a tsunami that would have shook the coast of Route 19, and destabilised boulders in the cliffs. Therefore, the eruption was the cause of the blockage, just not in the ‘hurling’ way the game describes.

After taking a very long route around, you can finally reach what remains of Cinnabar Island. Once a thriving island with a gym, mansion to explore and a state-of-the-art laboratory that could resurrect fossils! Now it is no more than a rocky outcrop with a Poké Centre that actually had to be rebuilt after the eruption.


It is in this remaining Poké Centre that one of the occupants says that it’s been one year since the eruption, which is how I know the timing of events, and how poor communication is in Kanto as the officer at Route 19 didn’t know if the ‘Cinnabarians’ were safe or not…

However, the other indicator that it has been some time and that the volcano has resumed is dormancy is the small lake that has formed in the remains of Cinnabar Volcano’s crater. Crater lakes are actually common sights within volcanic craters, as they form a nature depression made of impermeable volcanic rock. Based on the size of the volcano, lava domes can continue to grow and result in an island within the lake. Here is an example of me at Taal Lake in the Philippines. There is a small lake on what is known as ‘Volcano Island’ in the middle of Taal Lake, which is within Taal Caldera (a very large volcanic crater). As a result, there is a lake on an island, in a lake, on an island, in an ocean… it sounds more confusing than it really is.


The eruption of Cinnabar Island highlights the very real danger that those living on or near volcanoes across the globe today. The advancing lava forced nearly the entire island’s inhabitants (only 3 remained) to permanently leave and thus made homeless. It even forced the fire-type gym leader, Blaine, to set up his gym in a sorrowful cave on the Seafoam Islands off the east coast of Cinnabar (the big red dot to the right on the map above).

And now I shall end my main review with a very deep conversation with the Generation 1 rival, Blue (this definitely went right over my four-year old mind when I first played this game).


And so, for the results of Pokémon Silver’s critiquing:

  1. Aesthetics
    • It’s hard to fault Silver’s poor graphics. These were the first portable games in full colour, designed using the standard graphics of the era for the GameBoy. So, taking that into account, I’ll give it a 7. I can tell what lava is, it looks like a hot, bubbling liquid. Cinnabar looks like a newly formed mountain. That’s all that is necessary.
  2. Accessibility
    • Silver is pretty poor for accessibility. You can walk around the base of Cinnabar Volcano (in the graphic remake, SoulSilver, you can climb the volcano, but this review is purely based on the original 2000 edition).
  3. Viscosity
    • The lava within Claire’s gym shows a very large amount of degassing, producing large lava bubbles. This not only indicates a large volume of gases passing through the lava, but also that it is of a low viscosity. If the viscosity was high, then the bubbles would pass through slowly and less bubbles would be popping at the surface (unless there was a ridiculous volume of gas being pumped into it).
  4. Death
    • Straight up 0. That woman in Claire’s gym should be in the hospital from lava burns, but no, she just stands there waiting to battle the next passer-by.
  5. Overall plausibility
    • Claire’s gym is a definite 0. The health and safety regulations alone to have a lava floor with no barriers in a building accessible to all members of the public would shut the place down straight away.
    • The boulders blocking route 19 are a 6 for plausibility. As said its highly unlikely that they are volcanic bombs flung all that way. However, falling cliff boulders triggered by volcanic tremors, or a tsunami during the eruption could be likely.
    • Cinnabar’s newly emerged volcano and the destruction of the town I’d give a 9. This is a real risk that can and does happen in the real world. You only have to read up about Hawaii’s fissure eruptions from last year to see the truth.
    • So, (0+6+9)/3 = 5 on overall plausibility.



Welcome back volcano-videogame enthusiasts, and a big welcome back to Ed McGowan with his second review. Do check out his amazing review of volcanism in The Legend of Zelda: Breath of the Wild, if you have not already.


Subnautica is a fantastic survival game, giving you all the classic traits of gathering resources and maintaining health metres with one additional twist. This survival game is played underwater! Because an oxygen metre and giant scary fish were what was lacking from the other games in the genre… After crash landing in the ocean of an alien planet excitedly named 4546B, you quickly discover that the only way to get off the planet is to take the plunge, catch every little fishy swimming by, collect all the scraps of your crashed ship and all the locally found resources in order to dive deeper into the depths of the planet before being allowed to blast on out.

In order to keep players contained without the use of invisible walls at the edge of the map, the developers of Subnautica used geology! As it happens, the shallow waters you crash land in are an anomaly on 4546B, which for the most part is made up of an 8200 m deep dark ocean, full of super scary Ghost Leviathans, known as the Void. The geology used to form the shallow waters is actually a 2×2 km wide volcanic crater. Having erupted a long, long time before arriving, the volcanic crater has formed an oasis for small organisms to thrive, much like Yellowstone National Park today (only less tourists and more fish). There is actually one submarine volcano in the Solomon Islands that is known to be home to large fish such as sharks! Check out the brilliant video!

Armed with the knowledge the game contains an exciting volcano to explore it’s time to dive in deep (quite literally) into the volcanology of Subnautica!

Continuing with the standard criteria out of 10, 1 being unrealistic and 10 being realistic for:

  1. Aesthetics
  2. Accessibility
  3. Viscosity
  4. Death
  5. Overall plausibility

Results: I wouldn’t recommend swimming in an active volcano, even in a videogame…

One of the first times volcanism is encountered in Subnautica is in the form of black smokers. Found in the deeper regions of the volcano’s surface, the smokers have a multitude of benefits. They are an easy to find source of rare mid-tier resources that are needed to build many tools and submarines. The rubies in particular can be used to make treated glass that is needed to build the ‘Seamoth’, a small, maneuverable sub.

Another use of them is as a source of thermal power for your base. When starting in the shallows solar power is the first form of power. However, deeper down the solar panels become insufficient, thus alternative sources must be found. With enough thermal plants I was able to keep my sizeable base going.

Black smokers in real life are a fascinating biome. Being so rich in organic elements, they are believed to be the site of the origin of life. Our original ancestral home, although certainly not one we can easily return to. They are commonly found at depths of 2500-3000 m on the sea floor, much deeper than in Subnautica, and heat the nearby seawater to temperatures exceeding 400 °C.  First discovered off the coast of the Galapagos Islands at an oceanic spreading ridge in 1977, these unique smoking structures were teaming with life. This life is like none found anywhere else. Feeding off the nutrient rich fluids, giant tube worms, clams, shrimps and much more thrive in large communities.

The other interest in black smokers most people have is in their economical value. The hydrothermal waters emitted from black smokers bring rich metals with them, forming what are known as ‘Volcanic Massive Sulphide’ (VMS) deposits. Such deposits contain lithium (like in Subnautica, no rubies though… they got it half right at least), lead, copper and zinc to name a few. However, due to the extreme depth that most black smokers are found it, it is not cost effective to attempt any mining of them, for now…

Any real volcanism isn’t seen in Subnautica again until much later on in the game. Having discovered all the blueprints for the large submarine (called a Cyclops), the exo-suit (Prawn Suit, shown in all its glory below) and maxed their ‘depth’ modules to allow them to venture to the depths of the game, you are finally ready to enter into the volcano itself!

After hunting around the various caves dotted around the map (or looking at the map on the game’s wiki) for one of the four entrances into the fabled ‘Lost River’, a briny river home to lots of scary monsters, you are finally able to reach the volcano’s inner depth, humbly named ‘Lava Zone’.


The ‘Lava Zone’ is essentially the still active magma reservoir/chamber of the volcano, of which the thermal heat generated has been fueling the hydrothermal waters emitted by the black smokers above. Molten lava is flowing all around and cascading down pretty waterfall (or should I say lavafalls?) with a very low viscosity, suggesting a more basaltic composition.

The rest of the area is covered in cooled lava (top of fig a) that show the distinctive form of the outer lava cooling and forming a hardened shell, while the still hot molten lava bursts out before cooling and forming a new hardened shell, brilliantly videos and posted on YouTube here (ignore the title of the video). In other places where the graphic artists decided to change things up, the lava shows a more ropey texture (bottom of fig a). Both other these textures (the shells and rope) are characteristic of pahoehoe lava (fig b & c), a basaltic lava type who’s name means ‘smooth’. This lava is very commonly associated with Hawaii, along with a’a (spikey) lava.

While a very cool and exciting scenery to swim around in, it is sadly an unrealistic one for the setting. When lava meets water, it is very quickly quenched, adding the pressures found 1300 m below sea level and the possibility of actual flowing lava underwater as seen here is very slim, even if it is in the heart of an active volcano. Instead of pahoehoe lava textures, the basalt would form pillow lavas. The high temperature of the lava would also vaporise the water, producing a fair amount of steam, which is lacking from Subnautica’s visuals.

Here is a great video of a real submarine volcanic eruption:


The other unrealistic part of the Lava Zone (and I’m very thankful of this), is the massive half dragon, half squid monster living within the volcano (fig a)… I thought I had found a lava bomb produced by the volcano (fig b), until I realised more were being vomited up by the leviathan as a form of attack. And if that wasn’t enough, he tried to eat my submarine. And so, on that scary note I will end my critical scoring of Subnautica. Onto the summaries!


    • A solid 9 with the combined look of the black smokers, the texture of the molten lava and the pahoehoe lava.
  1. Accessibility: 7
    • The black smokers are pretty easy to get to. One upgrade to a seamoth’s depth module and you can easily start building a base around them. The Lava Zone on the other hand is tricky to find. Both trying to find the entrance to the Lost River and navigate down to the Lava Zone takes a lot of upgrades and time. But it is meant to be the final chapter of the game, so I’ll let them off.
  2. Viscosity: 7
    • The fast-flowing lava indicates a low viscosity matches the basaltic pahoehoe texture of the cooled lava. However, if you attempt to swim in the lava the viscosity is so low it’s like water, which is not what you would expect from real lava.
  3. Death: 0
    • Dying in lava is really difficult in this game. I died many times and not once from burning to death in a molten river despite trying. The only thing that happens is the screen becomes slightly patchy with burn marks and you slowly take health damage.
  4. Overall plausibility: 6
    • An underwater Yellowstone is highly plausible as proven by the Solomon Islands and that one regularly erupts, so isn’t even as safe as 4546B’s caldera. The black smokers are accurate with the thermal energy and lithium deposits, not so much with rubies. Low viscosity flowing lava matching the pahoehoe texture is another tick to Subnautica.
    • However, despite all the accuracy I’m forced to give a low score of 6 because of the implausibility of free-flowing lava, with no steam underwater. Close but no cigar.


If you enjoyed this review, remember to check out other reviews of volcanism/geology in videogames and also what is on my to-do list:


Lego Marvel-at-this-lava (and DC Supervillains)

If you have never played a Lego game, please do so. My first was the original Star Wars trilogy and it was a delight. Anyway, Lego has a small series surrounding the DC and Marvel comicbook universe, and the two most recent ones: Lego Marvel Superheroes 2 and Lego DC Supervillains are just great.

Lego Marvel has the storyline of the time-travelling villain Kang creating his own world by bringing different bits of the Marvel universe together (Xander, one of the cities in The Guardians of the Galaxy becomes neighbours with Post-Ragnarok Thor’s world Asgard). In the DC game, the Justice League’s evil counterparts, the Justice Syndicate, takeover and the villains try to stop them and in equal parts be jealous that they are better villains than them.

Volcanism was limited but still raised some interesting questions! As before, I had some criteria out of 10, 1 being unrealistic and 10 being realistic:

  1. Aesthetics
  2. Accessibility
  3. Viscosity
  4. Death
  5. Overall plausibility

To navigate levels (only contributed to a little bit of the data for both games), I went back and made sure I was a character that could fly and regenerate health (e.g. Raven and Wonder Woman for Lego DC and Captain Marvel for Lego Marvel). Enemies were only a minor nuisance here. Most volcanism evidence was in the hub worlds, so had total freedom to explore.

Results: quality over quantity.

Lego Marvel Superheroes 2

Volcanism in this game is only limited to the Post-Ragnarok area/level. Still found some interesting stuff though.

Lego Marvel Super Heroes 2 (1)Lego Marvel Super Heroes 2 (5)

Lego Marvel Superheroes_gif (1)

A nice cone, with extensive lava flows and an ash plume drifting towards the Xander area. The ashfall was a bit unrealistic, as it only restricted to the Asgard area and did not drift. In reality, if when a volcano erupts and it produces ash, wherever the wind blows, the ash goes and falls. Relatively small eruptions that produce ash plumes can still travel far (such as the 2010 eruption of Eyjafjallajökull, Iceland). Bigger eruptions that produce ash plumes however, can circle the whole world! An example is the 1812 eruption of Tambora in Indonesia.

Image from BBC News: http://news.bbc.co.uk/1/hi/world/europe/8634944.stm

If we look at Asgard itself, there are some interesting stuff.

Lego Marvel Super Heroes 2 (3)Lego Marvel Super Heroes 2 (3)

First is the interaction between the built environment (well…what is left of it anyway) and the lava flows. The top image shows an almost complete burial of a building and in between two lava channels and the bottom image is lava flowing under a stone bridge.

The building looks like it was destroyed by the volcano emerging right there or, buried by volcanic ash and/or pyroclastic material. Cannot say for certain what scenario it is but, all are plausible. The capital of Montserrat, Plymouth, is buried by pyroclastic material/ash/lahars (Figure a). The town of Armero is buried by lahars from the 1985 eruption of Nevado del Ruiz in Colombia (Figure b) and lava from Mt. Etna in Italy, has buried buildings in the past (Figure c).

The intact stone bridge with the lava flowing underneath it interests me. Like in figures a, b and c, buildings can withstand the heat and pressures of volcanic hazards to a certain extent. What is the melting point of bricks? No idea, but luckily someone wrote a paper on it! According to Kanolt (1912), various types of brick have the following melting points (I had no idea there are so many types of brick):

  • Fire clay: 1555-1725°C (2831-3137°F)
  • Bauxite brick: 1565-1785°C (2849-3245°F)
  • Silica brick: 1700-1705°C (3092-3101°F)
  • Chromite brick: 2050°C (3722°F)
  • Magnesia brick: 2165°C (3929°F)

The melting points of “stone” really does depend on it being either sedimentary (e.g. sandstone), metamorphic (e.g. marble) or igneous (e.g. basalt). Whilst I cannot say for certain what “type” of stone is used in Asgard, I am going to say it can withstand the high temperatures of lava (700-1200°C/1300-2200°F). On a similar note, last image from Asgard is this tree that had survived:

Lego Marvel Super Heroes 2 (4)

If not in the direct path of lava or another volcanic hazard, trees can survive. Even still, if they are, some trunks and branches can survive but lose their vegetation, but some do not lose their leaves! For example, these trees from one of the 1902 pyroclastic density currents of La Soufrière St. Vincent (my masters and PhD study area) stayed standing, but lost their leaves:

From Dr. Tempest Anderson’s collection at the Yorkshire Museum, UK: https://www.yorkshiremuseum.org.uk/collections/collections-highlights/temptest-anderson-explorer-and-surgeon/

Here are some other photos of the lava in/around Asgard and also what it looks like in the level attached to this area:

Also, this is how you die in both Lego games if you are a character that can regenerate health (characters that do not die instantly):

Lego Marvel Superheroes_gif (2)

  1. Aesthetics: 7
    • It is not bad, flow mechanics behave alright, got cooler bits forming on top of the lava, volcanic ash is visible but like Spyro, there is a lack of flow complexity.
  2. Accessibility: 9
    • In the Asgard portion of the hub, it is easy to get to if you use a flying character. The background in the level attached is not accessible.
  3. Viscosity: 7
    • Pretty good, no complaints but again, lacks complexity and seems too runny for my liking.
  4. Death: 1
    • This is Lego. It really is not in the realms of realism other than that you can die. On a similar note…Lego is plastic. It should just melt. But…I suppose that would be pretty graphic for a children’s game.
  5. Overall plausibility: 8
    • I am quite happy with it! Apart from the lack of flow complexity, the way Lego dies and the volcanic ash not impacting outside of Asgard that brought the mark down.

Lego DC Supervillains

Since this was done by the same company, there is not much difference apart from what volcanism is on offer to explore. All of it is restricted to the world Apokolips (pronounced apocalypse): home of Darkseid (kind of DC’s equivalent of Thanos), Granny Goodness (who is not good) and the Female Furies (who will hurt you).

This place is insane. It is essentially a city living on/in (?) a lava field. I just…I love it. I do not know where to begin. Okay, I will start with that this is not plausible in the slightest. What is feasible are all the lava falls, which I touched upon in my Spyro post. The texture/viscosity of them is like honey which is kind of similar to pahoehoe lava. I cannot say for certain what kind of material the buildings are made out of. It is metal, which was established in my Spyro write-up of being able to withstand the temperatures of lava. Cannot possibly imagine what it took to incorporate the lava into the infrastructure and if the eruption was happening before, during or after the construction of the city.

The background landscape in the first two images is bit confusing, but does reminds me of a fissure eruption landscape. Think 2018 Kilauea in Hawaii and 2014 Bárðabunga-Holuhraun in Iceland. Fissure eruptions produce extensive and complex flow paths, so if the sharp rock features were there before, it works out fine. Not entirely sure if an eruption could form them.

What is also interesting is the texture of the solidified areas in the last image. Looks like basalt lava textures but also like a moonscape? Also not sure about the glowing rock in the background. Unless it is ‘A’a or blocky lava (see photo below) that has been emplaced and is just taking a long while to cool.

A’a lava on Hawai’i. Image from: https://www.lpi.usra.edu/publications/slidesets/hawaii/slidepages/slide_03.html

I have saved the best (in my opinion) to last:

LEGO® DC Super-Villains (8)LEGO® DC Super-Villains (10)

Look.at.that.ropey.lava. It is my favourite bit of lava flows. It is very common and associated with pahoehoe lava. The texture forms when the upper crust of the flow starts to cool and behave like elastic, with the flow underneath creating the folds before it solidifies. It is just so awesome.

Image taken by Burtner A. (https://www.usgs.gov/media/images/pahoehoe)

Out of the games I have revisited so far, only this game has made an attempt to diversify in the representation of lava flow texture complexity. Give more me diversity!

  1. Aesthetics: 8
    • I am a sucker for pahoehoe.
  2. Accessibility: 9
  3. Viscosity: 9
    • One extra point for the pahoehoe. Bonus point for effort.
  4. Death: 1
  5. Overall plausibility: 9
    • Extra point for the pahoehoe! I love it okay?!

This has been fun, I can strike one more off the list. I promise the next game I do is Shadow of the Tomb Raider.

In the meantime, happy gaming!


I’m a 4th year now?!

Hello! So its been a while…I thought I update everyone on what has been going on in my #phdlife

Neverending writing

These past few months I have been focusing on getting drafts on my three results chapters.

Chapter 5 was the first draft I completed and gone through a number of revisions – it is focusing on the impacts of La Soufrière on the agriculture sector from the 1812, 1902 and 1979 eruptions. I would say this has been the most challenging for me as I had little knowledge on economics and dynamics of the colonial/postcolonial markets. Every new draft is an improvement though, I have certainly found some interesting sugar cane production figures from 1812; learning about the different treatments between small allottee peasants and estate owners post-emancipation for 1902 and how the 1979 eruption and contract farming impacted the banana industry.

Image result for banana gif

The next chapter I completed to a full draft (and consequent revisions) was chapter 4. This chapter has been fun, its been reconstructing the three eruptions from various archive sources (letters, diaries, photographs and so on) and interviews (for the 1979 eruption). I have been making a chronological narrative and hazard maps from them (see below) and I have done my best to make the observations centre stage of the writing, with my volcanology interpretations after them. I am currently re-editing this chapter, and hopefully this draft will be as final as it can be next month.

2017-09-24 18.24.02
Left to right: 1812 eruption hazard map; 1902-1903 eruption hazard map and; the 1979 eruption hazard map. The base maps used were produced near to the eruption, so the 1812 base map is from the 1760s, the 1902 map is from the 1890s and the 1979 map is from the 1950s. I did this to keep the hazard mapping contexual to the time period.

The most recent chapter that has been drafted is my impacts on society chapter. This one has certainly seen the most changes in terms of its structure and what I wanted to say. The fact that the three eruptions happened at very distinct periods of societal development: slavery, post-emancipation and on the eve of Independence, means there is a lot to cover. And that has certainly been the issue at the moment…I have SO much I want to say! I will certainly need to be brave when deciding what to keep and what to either put on the back burner or put elsewhere. I have focused on the evolving risk, vulenrability and resilience between each eruption, and other topics such as how colonial racism hindered recovery in 1812 and 1902, and talking about the term ‘badow’ which evacuees created during the 1979 eruption.

Now that each chapter has been fully drafted, I need to start bringing it altogether, making sure my main themes/arguments thread nicely throughout. Still working on that. The biggest problem I have at the moment with my editing is that I am adding more in and not sacrificing any. My brain thinks that all of it is relevant. Not cool.

Image result for do not want gif

In other news…

Just had my 3rd year annual review on Friday…I was nervous for no reason as per usual. I think its because I am just becoming really attached to my writing now (a good thing and a bad thing) so I want to do well. There are things I need to work of course, but I am ready for what lies ahead!

Other big(ish) news is that I have moved out of the city where I am at uni and moved in with my dad up north. Its been good so far, sometimes isolating as I do not have other PhDs to talk to face-to-face (although I do skype with a friend if I/she has a research problem we can talk through) but I am managing. I have also taken up part-time temp work to keep me going for now…been interesting juggling non-academic and academic work!

Lastly, remember when I said there was a visiting researcher position I was applying for? Well…I can now say that the funding was accepted, so I will be heading to the University of Aarhus (Denmark) doing a mini Geoheritage project sometime next year! I am very excited to use my historical volcanology knowledge in a different way!

Image result for wynonna earp gif

What is next?

Just got to keep on with the writing! And keeping up with earning money. And making sure I eat. And exercise. And socialise. And deciding when to go to Denmark and find a place to live etc etc etc…

Image result for just keep swimming gif


A quick update!

I apologise for the lack of posts…been busy writing away!

I have completed drafts on chapters 4 and 5, and currently working away on chapter 6. Chapter 4 I reconstructed the 1812, 1902 and 1979 eruptions of La Soufrière using archive sources and interviews. Chapter 5 was the impacts of the eruptions on the agricultural industry. Chapter 6 I am focusing on the evolving social risk and geoculture across the 168 years.

Chapter 6 is a bit of a challenge, but I have a lot of fascinating stuff to share once it all comes together! 

In other news: 

  • I have applied for a Visting Researcher position but I won’t say anything more! 
  • I will be attending the IRDR 7th Annual Conference in July
  • I’ll also be attending a ‘Building Resilience to Geohazards in the Face of Uncertainty’ hosted by the Geological Society in September

That’s all for now! I’ll be using my new mantra to get through the next few months:


Etna putting on a show

Because of the whole faff of the Oscars (honestly, why it was headline news I’ll never know), some may have missed something awesome: Mt Etna in Sicily started producing Strombolian activity at a new scoria cone at the Southeast crater last night.

Here is a link to a very stable live video feed of the ongoing eruption, the featured photo is a screenshot of tonight’s activity. Enjoy!


Archive adventures in the US

I was in the USA for 2 weeks September-October on a hunt for more archival sources related to the historic eruptions of La Soufrière. I had never been to America before so I got distracted by all the ‘bigness’ of pretty much everything compared to where I grew up and lived in the UK.

I had two aims:

  1. Obtain copies of the diaries of the American Barrister Hugh Keane from the Virginia Historical Society in Richmond, VA and;
  2. Obtain field notebook copies of the American Geologist Dr Edmund Hovey from the American Museum of Natural History in New York City.

I have to say, I was very impressed with what I found.

My first stop was the Virginia Historical Society in Richmond. I was well aware of the rich history the city and the state itself so I was expecting great things.

One of the entrances into the Virginia Historical Society archive.
Hugh Keane was a barrister in St Vincent in the early 1800s, but his family had been on the island since the late 1700s. His diary entries were in most part short (and small) but he does write on the 30th April about the beginings of the 1812 eruption.

Interesting, if not annoying to transcribe, handwriting for a diary (Mss1 K197 a 3-30)
Although this is what I came for I did run into a few issues. One is the handwriting, in which I need to take a paleography course at The National Archives in London for (online thankfully). Another was I actually took most of the pages at a wrong angle (oops) making it harder to transcribe. Another is the language and abbreivations he uses. And a big one is that he doesn’t give a day-to-day running commentary on the eruption. Either Hugh was too busy to watch it (he was a barrister during the slavery era) or he got bored of it. Hopefully his entries will provide helpful insights in what the volcanic processes and hazards were, if not to gain an idea what the responses were.

In any case, I got what I went for so I was happy with that. For Edmund Hovey’s collection I did not know what to expect. All I knew was that he was ordered by the American Museum of Natural History to investigate the eruptions of Pelée and Soufrière.

Dr Edmund Hovey was a geologist and at the time, assistant curator in the palaeontology section of the museum.

Statue of Theodore Roosevelt outside the entrance of the musuem.
Once I got to the room where the collection was held (after getting briefly lost in the museum naturally), the curator assisting my search showed me the list of what they had. It looked exciting. A small cool collection was artifacts that Edmund brought back from Martinique:

A stack of 9 fused glasses retrieved from St Pierre, Martinique. A pyroclastic density current killed approximately 20,000 people. 1 man survived in a prison cell (AMNH: MPA018).
I got more excited when I opened up the field notebooks:

First page of one of Edmund’s field notebooks (AMNH: Box 2, Item 17)
Anyone who has done a geoscience based degree or course, knows how important a field notebook is. I was quite impressed with the level of detail Edmund went into, like a true geologist: time, date, location, and detailed descriptions of the geology and any hazardous phenomena. If this was part of an assignment today he would get high marks on descriptions but not so much on sketches. At the beginning of each notebook he would also note down the adminstrative hierarchy (Governor, adminstrator, executive council etc.) and if he was accompanied by anyone. The most surprising find for me (and the most critical) was that he interviewed and gathered statements of those who observed volcanic activity. Reading these statements, another very important aspect became apparent, he was including more voices than the ‘white elite’ men. He spoke to black men and women whose voice I had so far not been able to read (granted he called them negroes and negresses but I guess that was the language at the time).

My most favourite statement, that I will share with you all, was from a surviour of a pyroclastic density current that flowed down the eastern flank of the volcano over the Orange Hill Estate House. People survived in a rum cellar, whilst a number died in the corridor leading to the cellar and the estate manager, his wife and nephew died on the verandah.

A cook told me that trash in front of cellar and some of the houses were set on fire by the hot stones. Taylor (who is a very intelligent black man) and the others said that the “cloud rolled down from the Soufriere along the ravines, struck the sea, burst into flames foof, foof, foof, and at once turned back toward the sugar factory striking the building with great force and forcing shut the heavy doors and the heavy wooden shutters of the window openings. Heat was very oppressive. Air suffocating. Smelled of sulphur (rotten eggs, one said). For four or five minutes it seemed as if everyone would die from suffocation and cries for water were heard on all sides. Then the air cleared a bit, though the rain of dust and stones continued”.

From all information gathered from my trip, I can understand the volcanic hazards better: what, where, when and their impacts. They will also help inform impacts on the agricultural and society, where possible.



I like to thank the Royal Geographical Society for funding.