Tag Archives: USA

Monster Hunter: Generation Ultimate – a volcano-videogame review

Welcome back volcano-videogame friends, Ed McGowan is back with another review for a little known series called Monster Hunter.

***

*In my best John Hammond impression* Welcome, to Monster Hunter!

This is the ultimate game where Jurassic Park meets Japanese anime (very literally in the case of the MH anime), where the aim is to run across various landscapes, hunting down a multitude of dinosaurs and dragons, and repeatedly smashing them over the head with an oversized sword, club, or axe in my case (love a good switch axe).

Just like any fantasy exploring game, especially one that has literal dragons, each of the Monster Hunter installments has its own active volcanic region. All are amazingly decorated with the franchise’s signature visuals, containing flowing lava rivers and exploding volcanic peaks. In Monster Hunter Generation Ultimate (the ‘ultimate’ is MH’s way of saying ‘+’ or ‘2.0’) there are two main volcanic regions to explore. The first is accessible upon reaching level 4. The other is not available until level 8! Because it takes long enough to reach level 4 (let alone 8). I shall focus this review on the first volcanic region and leave the second region for another review.

Once again, as with all our other previous reviews, the game will be reviewed using a criteria out of 10, 1 being unrealistic and 10 being realistic for:

  1. Aesthetics
  2. Accessibility
  3. Viscosity
  4. Death
  5. Overall plausibility

Results: Visually stunning. Biodiversity interesting. Volcanic accuracy? Not quite.

The aptly named ‘Volcano’ region in MH is one of my favourite places to quest. First arriving on a small white sandy beach within a small cove (Fig. 1), this actually kicks off the volcanic inaccuracies within this game. The cliffs that surround the cove are made up of dark grey rock (presumably lava) and the further inland you go, the darker the rocks get. Natural beaches are nearly always made up of the local rocks, eroded out of the surrounding cliffs and washed back and forth along the beach to produce the sand. This means that beaches do not have to be your standard sandy white. In circumstances like this on volcanic islands, the beaches are often black! Where the sand originates from the erosion of the local dark, mafic lavas. One of the most famous real-world examples is Hawaii, that has many black sand beaches (Fig. 2), and even green ones comprised of small olivine crystals eroded out of the nearby lava!

Venturing into Zone 1, the walls are made up of several volcanic rock layers (Fig. 3). It is unclear if these are successive layers of lava stacked up over numerous eruptions, or if they are successive pyroclastic flow deposits known as ignimbrites. Pyroclastic flows are terrifying clouds of extremely hot ash, gases and volcanic rocks that barrel down volcanic slopes at amazing speeds (they can move at 200 m/s!). Chances are you would have seen one in the latest Jurassic World movie, however, I am sorry to announce Chris Pratt should have died when he was engulfed in the cloud. The hot gases alone would have incinerated his lungs.

Based on the ~10+ ft deep incised paths and even deeper cavern through the layers I am more inclined to believe these are ignimbrites (Fig. 3). Lava is a notoriously stubborn rock to erode out paths like this. Ignimbrites on the other hand, are most up of volcanic sediment and boulders that were mixed up in the density cloud, meaning they can often end up as a sort of poorly consolidated soil. This makes them much easier to erode, especially if rain falls on the volcanic slopes, as  it rushes down as a lahar (a volcanic mudflow) that carve out deeper and deeper riverbeds with each flow. Here is an example of a lahar-cut pyroclastic deposit I had the amazing opportunity to see (Fig. 4a) and a lahar along another deposit (Fig. 4b), both around Volcán de Colima, Mexico.

In Zone 2 we get our first look at a definite lava flow! A glowing red looking mulch of an active lava flow (Fig. 5a), stuck in a constant motion of advancing forwards, but never making it any further due to the way the game was programmed with fixed maps. A path to Zone 3 looks to be a lava tube (Fig. 5b), the hollowed outer shell of a previous lava flow, where the internal, still molten lava passed through. The lava tube also directly lies on top of the layered rocks (on the right of my character’s head), showing a distinctly different texture. This adds further support to my belief the layers are successive ignimbrites.

Advancing further inland (in any direction) and the scenery changes dramatically. The greys become black and lava is everywhere, glowing a bright reddy-orange. The lava comes in two forms: 1) black advancing lava (Fig. 6) lava rivers/lakes (Fig. 7).

The advancing lava seen in Fig. 6 is a very common occurrence, where the outside has cooled to a solid black rock with patches of still hot molten liquid. This forms a very rough, craggy texture called A’a lava. Fig. 8 is an example of such lava from Parícutin volcano in Mexico that erupted between 1941-52. Here is also a video from YouTube of a’a lava advancing across a road in Hawaii during the 2018 eruptions, which brilliantly shows how the lava cools and crumbles as it moves forward. Due to MH’s graphics, this rough texture has been smoothed over. Also, because of the map being set to fixed dimensions the lava doesn’t advance otherwise after a few missions Zone 2 would be hard to run through. Instead the molten lava inside is animated to look like it is trying to advance.

Fig 13
Fig. 8

Lava rivers and lakes also occur in the real world, and are a spectacular site, as shown in this BBC clip! However, as seen in the clip, the lava flowing in the rivers has a thin black skin (like on a cold soup) of cooled lava. The only orange parts seen are in freshly exposed sections that have yet to be cooled by the open air.

Within MH they have made it so that you cannot walk on the lava, prevented so by an invisible wall. I therefore suspect that the developers removed the black ‘skin’ from the lava graphics to help these boundaries more easily visible. There is nothing more annoying than trying to dodge a monster’s attack and being unable to because of a hard-to-see obstacle!

After quite a trek you finally reach the heart of the volcano in Zone 6, where you can run up to the lower crater edge and stare into the upwelling molten liquid (Fig. 9). There are not actually many volcanoes with constantly sustained lava lakes in their crater in the world. And those that do tend to be shorter, shield volcanoes like Kilauea in Hawaii, or Erta Ale in Ethiopia (Fig. 10). Instead, with most strato-volcanoes (the taller, stereotypical mountain peak shaped) the lava within their crater solidifies, leaving a rocky pit (Fig. 10). When the volcano is active the lava is either slowly forced up by rising magma underneath forming what is called a ‘lava dome’, which looks like a giant, rocky mole hill, or, if the pressure under the solidified lava builds up enough the top can explode like a cork out a champagne bottle. Only in the latter scenario would you be temporarily able to see the molten lava within the volcanic crater. However, you would also see the lava being thrown in the air as either ‘spatter’ or more deadly volcanic bombs, along with the ash plume that we can see here in this one (Fig. 9).

Gif 1 - Fig. 9

Fig 10

There are other ways a volcano like the one here in MH can grow and erupt, such as lateral-blasts (Mt. St. Helens, USA) or sector collapse (Teide, Tenerife). But for the purpose of keeping this review short and not bore you too much, I will keep these for another review.

One of the interesting things with MH’s ash plume, which is better seen by continuing to Zone 8 (the crater summit), is the inclusion of a prevailing wind direction. This is mainly interesting because it is an animation feature that is missed out in many video game volcanoes (e.g. The Legend of Zelda: Breath of the Wild or LEGO Marvel Superheroes 2), where they simply have the ash plume rising directly upwards and outwards evenly in all directions.

MH’s ash plume being blown to one side is an accurate representation of what occurs in the real world, where the wind is blowing strong enough to direct the ash. However, this normally occurs higher up where the plume reaches maximum height, or the wind is stronger than the heat that is forcing the ash straight up. This was perfectly demonstrated in 2010 by Iceland’s famous eruption of Eyjafjallajökull.  In this case a south-westerly wind blew all the ash towards Europe, causing a major hazard to all the planes engines within Europe’s airspace. Funnily enough though, the airspace over Iceland was not shut down to planes approaching from America in the East as none of the ash was directed that way.

And this volcano is not the only one that shows a prevailing wind direction. Looking out away from the main volcano others can be seen with massive plumes blowing to the NE (Fig. 11a). In other maps within the game there are other active volcanoes, also with directed plumes (Fig.11b-c).

Now that we have managed to travel from Basecamp on the beach all the way to the summit of the active volcano, it is time for the scores.

Aesthetics: 6.5

The aesthetics of the deposits in the cliffs within the lower zones is texturally very nice. The lava takes a few points deduction due to the rounding of the texture on the end of the lava flows in Zone 2 & 9, and a lack of a black ‘soup skin’ of cooled lava. However, the rest is fairly accurate. Points are also given back due to the wind direction visible in the ash plume.

Accessibility: 5

The volcano is limited in its accessibility as there are set areas you can visit, with only an image of the map filling the screen as you transition from area to area. You can only climb up certain cliffs within the area as well. However, the map does provide you 11 areas that you can run around and explore, all with their own unique look, showing off a range of volcanic features.

Viscosity: 3

This one was going to score fairly well until I thought a Rathalos (big scary dragon) that ran, crashed on and stood on top of the lava without sinking a millimetre. It would seem that dragons can walk on lava like Jesus could walk on water (Fig. 12).

Gif 11

For lava to have travelled as far away from the Central volcano all the way down to Zone 2 (possibly even right down to the Base camp if they are lava deposits and not pyroclastic deposits) then it has to have a very low viscosity. This is especially true if it is to flow like a meandering river in Zone 7. High viscosity lava is too sticky and unable to travel as far away from its source.

However, lava with a low viscosity doesn’t tend to result in explosive eruptions that cause fragmentation that produces ash. Therefore, the lava’s viscosity does not match the massive plume being produced at the crater, nor match with the idea that there are pyroclastic deposits in Zone 1…

Low viscosity volcanoes also tend to be a flatter type of volcano known as shield volcanoes. These grow outwards more than they do upwards, and so look like a shield lying flat. Higher viscosity volcanoes, because the lava is unable to travel away from its source as well as low viscosity, grow into taller strato-volcanoes.

Despite the contradicting viscosities, it is possible for a magmatic plumbing system to be so complex that volcanoes in the real world can produce both basalt (associated with low viscosity lava) and rhyolite (associated with high viscosity lava). Examples of such ‘bimodal’ systems can be found in the Tarawera Volcanic Complex, New Zealand (Leonard et al., 2002) and the Snake River Plain, USA (Morgavi et al., 2011). So there is some plausibility for the contradicting lava, unknown bedded deposits and the volcanoes shape in MH.

But then the Rathalos happened… Nothing that size, even if it has wings, could splash into lava and not sink straight in!

Death: 6

While you cannot be killed by the lava directly due to the invisible walls (which to be honest is realistic because no one would be stupid enough to run over lava as molten as it is in this game), there are still environmental effects that can slowly kill you.

The first is the heat. As soon as you enter Zone 6 or 8 you must quickly drink a ‘Cool Drink’ to prevent taking heat damage. The heat also causes the avatar to start sweating and even keel over panting if you stand around too long without having had a drink (Fig. 13). ‘Cool Drinks’ may not be a real thing to allow volcanologists to walk around flowing lava without breaking a sweat, but it does highlight the importance of having a drink to stay hydrated in such a hot environment.

Gif 12

The other way you can take damage is if you stand on the hot surfaces at the edge of the lava/invisible wall (Fig. 14). These spots are so hot that not even a ‘Cool Drink’ can keep you safe. Although saying that, damage is slow, and my avatar didn’t seem to react at all to being burnt alive…

Gif 13

Overall plausibility: 4

I think with Monster Hunter they tried to combine too many aspects of volcanology into one area to up the dramatics and the level of hostility. As you increase through the levels the areas monster’s get tougher and deadlier, and therefore, so must the landscapes they live in.

While I do believe that there are many accurate representations in the game, such as the lava flow in Zone 2, the lahar carved trenches and the bellowing ash plume, I believe that all of these going on all at the same time is beyond the scope of what we see going on in the real world.

Once I get sufficient time, I will get around to reviewing the second volcanic region in MH, the Volcanic Hollow!

Fig 22

Don’t forget to check out our other volcanic video game reviews!!

Curating the ‘Minorities in STEM’ account: Part 4

Hello! So…it has been a while. Since Part 3, I finished my time as a visitor PhD at Aarhus University in Denmark and now that paper has been submitted for review (and is now available as a preprint…AND we have comments!), PhD work has been going well, just re-working on all my chapters and I am now a Teaching Fellow in Physical Geography at Newcastle University!

So back to the task at hand, Part 4 is based on a thread I did for the Minorities in STEM Twitter account back in April, and I am delighted to have guest bloggers throughout the month providing their perspectives on the diversity (or there lack of) in Earth Sciences to last the month…enjoy!

*

I will start by sharing this article about who has PhDs in Geology in the US…spoiler: it’s not very diverse in terms of ethnicity. When I read this article, I wanted to see if there are any similar stats for the UK. I found that there is, but it is not broken down into earth science let alone geology, which in my opinion presents a few problems. First problem is the data itself. There are a lot of countries that are classified as “Asian”. Same goes for generally grouping people by the continents. Each country is different, with different cultures, what qualifications/careers seen as “valuable”. Despite that, it does paint a not-very-diverse picture for UK universities: in 2015-2016, only 29 % of BME students were doing a full time first degree and the same group are less likely to achieve a 1st or 2:1.

It reminds me of the report that came out at the beginning of April about equality amongst UK universities: the University of Hull ranked first (woo!) and the Russell Group was not surprisingly at the bottom. Equality and diversity go hand in hand, sure you say you’re doing loads of outreach to encourage people from disadvantaged backgrounds to get interested in STEM but that doesn’t necessarily translate into them going to your university. There are so many factors.

I’m not saying I know all the reasons nor have solutions, but culture plays a big role BUT so does representation and visibility of how diverse STEM is. It goes beyond gender, when I mean diversity I mean ethnicity, sexuality, disabilities even your route into your career too. Just look how successful Black Panther was. I personally loved Shuri because she was literally a STEM princess! Now imagine how awesome it would be that other movies put the spotlight on other BAME STEM careers. It would be so awesome!

Back to the point: I have not found any solid data to see the ethnic diversity in UK earth science, particularly geology where I fall under. I’m serious when I say this: I can count on my hand who I know. If there are any more, PLEASE let me know!

The earth sciences are big on science communication and public engagement. I’m big on it and only wish I had more money and time to do more! Men and women in this field love to do it. Buuut ehhh…while having an increasing number of women in the field is great…there is a big lag in the other forms of diversity I talked about: ethnicity, sexuality, disabilities, career path and economic background. If we are serious in encouraging kids to take up STEM as careers, we need to be truly serious about the VISIBILITY of the representations.

We all have role models growing up right? TV shows/documentaries/movies that made you go: “I want to be like them one day” well…how about increase the visibility of the “other”? We’re everywhere! You just have to look! We’re all STEM nerds here, let us inspire!

The earth sciences in the UK are diverse in terms of men and women. In terms of other genders: nope. Sexuality? Yeah it’s getting there. Economic background, yes it’s on track. Ethnicity? Errrrmmmm….

This is where I’d love to see statistics on BAME earth science professionals here in the UK. Are we just that few? Or is there an issue of visibility here? Even in terms of retaining us in this field: is it like the women academic “leaky pipe” but worse for ethnic minorities? Diversity in all its forms only serves as good for science and the public. Of course, I am not saying that white people need to move out of the way, but instead, we need to stand shoulder to shoulder. If there are few of us minorities in earth science…then maybe ALL of us from all stages of STEM careers need to check ourselves, others, their institutions and truly come together to address the issue. Champion those who are doing awesome, help/mentor those who need help. And make all our diverse lives VISIBLE.

Maybe it’s my naivety and optimism. Maybe I’m just sick and tired of hearing the same stuff about “diversity” and it just sweeps ethnicity under the rug and nothing serious gets done about it. I’m an impatient person, so for me, actions speak louder than words. BE THE CHANGE! Following on from this, is nothing being done because we’re all just waiting for someone else to get the ball rolling? Can’t be bothered? Too much red tape? Do us minority folk really got to pull ALL the weight here? I have chronic fatigue folks, most days I’m too tired.

I will end this post by stating that, talking about addressing these issues is one thing, but actually taking action to improve the lack of UK earth science ethnic diversity is another thing. It’s a cultural, equality and educational issue that everyone needs to tackle.

Jazmin

Archive adventures in the US

I was in the USA for 2 weeks September-October on a hunt for more archival sources related to the historic eruptions of La Soufrière. I had never been to America before so I got distracted by all the ‘bigness’ of pretty much everything compared to where I grew up and lived in the UK.

I had two aims:

  1. Obtain copies of the diaries of the American Barrister Hugh Keane from the Virginia Historical Society in Richmond, VA and;
  2. Obtain field notebook copies of the American Geologist Dr Edmund Hovey from the American Museum of Natural History in New York City.

I have to say, I was very impressed with what I found.

My first stop was the Virginia Historical Society in Richmond. I was well aware of the rich history the city and the state itself so I was expecting great things.

2016-10-03-09-50-11
One of the entrances into the Virginia Historical Society archive.
Hugh Keane was a barrister in St Vincent in the early 1800s, but his family had been on the island since the late 1700s. His diary entries were in most part short (and small) but he does write on the 30th April about the beginings of the 1812 eruption.

2016-10-03-11-16-37
Interesting, if not annoying to transcribe, handwriting for a diary (Mss1 K197 a 3-30)
Although this is what I came for I did run into a few issues. One is the handwriting, in which I need to take a paleography course at The National Archives in London for (online thankfully). Another was I actually took most of the pages at a wrong angle (oops) making it harder to transcribe. Another is the language and abbreivations he uses. And a big one is that he doesn’t give a day-to-day running commentary on the eruption. Either Hugh was too busy to watch it (he was a barrister during the slavery era) or he got bored of it. Hopefully his entries will provide helpful insights in what the volcanic processes and hazards were, if not to gain an idea what the responses were.

In any case, I got what I went for so I was happy with that. For Edmund Hovey’s collection I did not know what to expect. All I knew was that he was ordered by the American Museum of Natural History to investigate the eruptions of Pelée and Soufrière.

Dr Edmund Hovey was a geologist and at the time, assistant curator in the palaeontology section of the museum.

14494807_10153850636261053_3249807565112207066_n
Statue of Theodore Roosevelt outside the entrance of the musuem.
Once I got to the room where the collection was held (after getting briefly lost in the museum naturally), the curator assisting my search showed me the list of what they had. It looked exciting. A small cool collection was artifacts that Edmund brought back from Martinique:

stack-of-fussed-glass-cups2
A stack of 9 fused glasses retrieved from St Pierre, Martinique. A pyroclastic density current killed approximately 20,000 people. 1 man survived in a prison cell (AMNH: MPA018).
I got more excited when I opened up the field notebooks:

box-2-item-17-st-vincent-kingston2
First page of one of Edmund’s field notebooks (AMNH: Box 2, Item 17)
Anyone who has done a geoscience based degree or course, knows how important a field notebook is. I was quite impressed with the level of detail Edmund went into, like a true geologist: time, date, location, and detailed descriptions of the geology and any hazardous phenomena. If this was part of an assignment today he would get high marks on descriptions but not so much on sketches. At the beginning of each notebook he would also note down the adminstrative hierarchy (Governor, adminstrator, executive council etc.) and if he was accompanied by anyone. The most surprising find for me (and the most critical) was that he interviewed and gathered statements of those who observed volcanic activity. Reading these statements, another very important aspect became apparent, he was including more voices than the ‘white elite’ men. He spoke to black men and women whose voice I had so far not been able to read (granted he called them negroes and negresses but I guess that was the language at the time).

My most favourite statement, that I will share with you all, was from a surviour of a pyroclastic density current that flowed down the eastern flank of the volcano over the Orange Hill Estate House. People survived in a rum cellar, whilst a number died in the corridor leading to the cellar and the estate manager, his wife and nephew died on the verandah.

A cook told me that trash in front of cellar and some of the houses were set on fire by the hot stones. Taylor (who is a very intelligent black man) and the others said that the “cloud rolled down from the Soufriere along the ravines, struck the sea, burst into flames foof, foof, foof, and at once turned back toward the sugar factory striking the building with great force and forcing shut the heavy doors and the heavy wooden shutters of the window openings. Heat was very oppressive. Air suffocating. Smelled of sulphur (rotten eggs, one said). For four or five minutes it seemed as if everyone would die from suffocation and cries for water were heard on all sides. Then the air cleared a bit, though the rain of dust and stones continued”.

From all information gathered from my trip, I can understand the volcanic hazards better: what, where, when and their impacts. They will also help inform impacts on the agricultural and society, where possible.

Jazmin

14364886_10153824370006053_7744601568963346004_n

I like to thank the Royal Geographical Society for funding.